ECON 452*

Overview of Stata 12/13 Tutorials 8 and 9

1. Three Probit Models

Three models of married women's labour force participation, where the observed binary dependent variable $inlf_i$ is defined as follows:

 $inlf_i = 1$ if the i-th married woman is in the employed labour force = 0 if the i-th married woman is not in the employed labour force

Probit Model 1: Has six explanatory variables, all continuous

The *probit index function*, or *regression function*, for **Model 1** is:

$$x_i^{T}\beta = \beta_0 + \beta_1 nwifeinc_i + \beta_2 ed_i + \beta_3 exp_i + \beta_4 exp_i^2 + \beta_5 age_i + \beta_6 kidslt6_i + \beta_7 kidsge6_i$$

where

nwifeinc _i	= non-wife family income of the i-th woman (in thousands of dollars per year);
ed _i	= years of formal education of the i-th woman (in years);
exp _i	= years of actual work experience of the i-th woman (in years);
age _i	= age of the i-th woman (in years);
kidslt6 _i	= number of children less than 6 years of age for the i-th woman;
kidsge6 _i	= number of children 6 years of age or older for the i-th woman.

Probit Model 2

Has five explanatory variables

- four continuous explanatory variables: nwifeinc_i, ed_i, exp_i, and age_i
- one *binary* explanatory variable: dkidslt6,

The probit index function, or regression function, for Model 2 is:

 $x_i^{T}\beta = \beta_0 + \beta_1 nwifeinc_i + \beta_2 ed_i + \beta_3 exp_i + \beta_4 exp_i^2 + \beta_5 age_i + \delta_0 dkidslt6_i$

where $dkidslt6_i$ is a binary explanatory variable defined as follows:

 $dkidslt6_i = 1$ if kidslt $6_i > 0$ for the i-th married woman = 0 if kidslt $6_i = 0$ for the i-th married woman

M.G. Abbott

Probit Model 3

Has five explanatory variables (the same ones as Model 2)

- four continuous explanatory variables: nwifeinc_i, ed_i, exp_i, and age_i
- one *binary* explanatory variable: dkidslt6,

The probit index function, or regression function, for Model 3 is:

 $\mathbf{x}_{i}^{\mathrm{T}}\boldsymbol{\beta} = \boldsymbol{\beta}_{0} + \boldsymbol{\beta}_{1}$ nwifeinc_i + $\boldsymbol{\beta}_{2}$ ed_i + $\boldsymbol{\beta}_{3}$ exp_i + $\boldsymbol{\beta}_{4}$ exp_i² + $\boldsymbol{\beta}_{5}$ age_i

 $+\delta_0 dkidslt \delta_i + \delta_1 dkidslt \delta_i nwifeinc_i + \delta_2 dkidslt \delta_i ed_i + \delta_3 dkidslt \delta_i exp_i + \delta_4 dkidslt \delta_i exp_i^2 + \delta_5 dkidslt \delta_i age_i$

Remarks: Model 3 is the *full-interaction generalization* of Model 2: it interacts the dkidslt 6_i indicator variable with all the other regressors in Model 2, and thereby permits all index function coefficients to differ between the two groups of married women distinguished by dkidslt 6_i .

Probit index function for Model 3 is:

 $\mathbf{x}_{i}^{\mathrm{T}}\boldsymbol{\beta} = \boldsymbol{\beta}_{0} + \boldsymbol{\beta}_{1}$ nwifeinc_i + $\boldsymbol{\beta}_{2}$ ed_i + $\boldsymbol{\beta}_{3}$ exp_i + $\boldsymbol{\beta}_{4}$ exp_i² + $\boldsymbol{\beta}_{5}$ age_i

 $+\delta_0$ dkidslt $\delta_i + \delta_1$ dkidslt δ_i nwifeinc_i $+\delta_2$ dkidslt δ_i ed_i $+\delta_3$ dkidslt δ_i exp_i $+\delta_4$ dkidslt δ_i exp_i $+\delta_5$ dkidslt δ_i age_i

In Model 3, the probit index function for *married women who currently have no pre-school aged children*, for whom dkidslt6_i = 0, is obtained by setting dkidslt6_i = 0 in the index function for Model 3:

 $(x_i^T\beta | dkidslt6_i = 0) = \beta_0 + \beta_1 nwifeinc_i + \beta_2 ed_i + \beta_3 exp_i + \beta_4 exp_i^2 + \beta_5 age_i$

In Model 3, the probit index function for *married women who currently have one or more pre-school aged children*, for whom dkidslt6; = 1, is obtained by setting dkidslt6; = 1 in the index function for Model 3:

$$\left(x_{i}^{T}\beta \middle| dkidslt6_{i} = 1\right) = \beta_{0} + \beta_{1}nwifeinc_{i} + \beta_{2}ed_{i} + \beta_{3}exp_{i} + \beta_{4}exp_{i}^{2} + \beta_{5}age_{i} + \delta_{0}1 + \delta_{1}1 \cdot nwifeinc_{i} + \delta_{2}1 \cdot ed_{i} + \delta_{3}1 \cdot exp_{i} + \delta_{4}1 \cdot exp_{i}^{2} + \delta_{5}1 \cdot age_{i}$$

$$= \beta_{0} + \beta_{1}nwifeinc_{i} + \beta_{2}ed_{i} + \beta_{3}exp_{i} + \beta_{4}exp_{i}^{2} + \beta_{5}age_{i} + \delta_{0} + \delta_{1}nwifeinc_{i} + \delta_{2}ed_{i} + \delta_{3}exp_{i} + \delta_{4}exp_{i}^{2} + \delta_{5}age_{i}$$

$$= (\beta_{0} + \delta_{0}) + (\beta_{1} + \delta_{1})nwifeinc_{i} + (\beta_{2} + \delta_{2})ed_{i} + (\beta_{3} + \delta_{3})exp_{i} + (\beta_{4} + \delta_{4})exp_{i}^{2} + (\beta_{5} + \delta_{5})age_{i}$$

... Page 4 of 12 pages

Stata 12/13 output for probit and dprobit commands

Use Model 2 to illustrate the meaning of several summary statistics that appear in the log file output for a **probit** or **dprobit** command in *Stata 12/13*.

The *probit index function*, or regression function, for **Model 2** is:

 $x_i^{T}\beta = \beta_0 + \beta_1 nwifeinc_i + \beta_2 ed_i + \beta_3 exp_i + \beta_4 exp_i^2 + \beta_5 age_i + \delta_0 dkidslt6_i$

where *dkidslt6*_i is a binary explanatory variable defined as follows:

 $dkidslt6_i = 1$ if kidslt6_i > 0 for the i-th married woman = 0 if kidslt6_i = 0 for the i-th married woman

Descriptive Summary Statistics for Variables in Model 2

Obs Variable Mean Std. Dev. Min Max .5683931 inlf 753 .4956295 0 1 nwifeinc 753 20.12896 11.6348 -.0290575 96 753 12.28685 2.280246 5 17 ed | 8.06913 753 10.63081 0 45 exp753 178.0385 249.6308 0 2025 expsq 42.53785 753 8.072574 30 60 age dkidslt6 753 .1952191 .3966327 0 1

. summarize inlf nwifeinc ed exp expsq age dkidslt6

Stata Probit Estimation Commands for Model 2 -- probit

		Sub Subbd ag		•							
ceration 0:	log likeliho	pod = -514.3	8732								
Iteration 1: log likelihood = -410.52123											
Iteration 2: log likelihood = -407.00272											
teration 3:	log likeliho	pod = -406.9	8832								
robit regress	sion			Numbe	r of obs	=	753				
-		LR ch	i2(6)	=	215.77						
				Prob	> chi2	=	0.0000				
og likelihood	1 = -406.98832	Pseud	Pseudo R2 =								
inlf	Coef.	Std. Err.	z	P> z	[95% C	conf.	Interval]				
inlf + nwifeinc	Coef. 0113531	Std. Err.	z -2.39	P> z 0.017	[95% C	Conf.	Interval] 				
inlf 	Coef. 0113531 .1217526	Std. Err. .0047493 .0247398	z -2.39 4.92	P> z 0.017 0.000	[95% c 02066 .07326	Conf. 515 534	Interval] 0020447 .1702418				
inlf nwifeinc ed exp	Coef. 0113531 .1217526 .1173689	Std. Err. .0047493 .0247398 .0185819	z -2.39 4.92 6.32	P> z 0.017 0.000 0.000	[95% C 02066 .07326 .08094	Conf. 515 534 191	Interval] 0020447 .1702418 .1537886				
inlf nwifeinc ed exp expsq	Coef. 0113531 .1217526 .1173689 0017634	Std. Err. .0047493 .0247398 .0185819 .0005991	z -2.39 4.92 6.32 -2.94	P> z 0.017 0.000 0.000 0.000 0.003	[95% C 02066 .07326 .08094 00293	Conf. 515 534 91 375	Interval] 0020447 .1702418 .1537886 0005892				
inlf nwifeinc ed exp expsq age	Coef. 0113531 .1217526 .1173689 0017634 0534423	Std. Err. .0047493 .0247398 .0185819 .0005991 .0079364	z -2.39 4.92 6.32 -2.94 -6.73	P> z 0.017 0.000 0.000 0.003 0.003 0.000	[95% C 02066 .07326 .08094 00293 06899	Conf. 515 534 191 375 974	Interval] 0020447 .1702418 .1537886 0005892 0378871				
inlf nwifeinc ed exp expsq age dkidslt6	Coef. 0113531 .1217526 .1173689 0017634 0534423 -1.022174	Std. Err. .0047493 .0247398 .0185819 .0005991 .0079364 .1452118	z -2.39 4.92 6.32 -2.94 -6.73 -7.04	<pre>P> z 0.017 0.000 0.000 0.003 0.000 0.000 0.000</pre>	[95% C 02066 .07326 .08094 00293 06899 -1.3067	Conf. 515 534 91 375 974 784	Interval] 0020447 .1702418 .1537886 0005892 0378871 7375641				

Stata Probit Estimation Commands for Model 2 -- dprobit

. dprobit	inlf nw	vifein	ic ed e	xp exps	sq ag	e dk	idslt6							
<pre>Iteration 0: log likelihood = -514.8732 Iteration 1: log likelihood = -410.52123 Iteration 2: log likelihood = -407.00272 Iteration 3: log likelihood = -406.98832</pre>														
Probit regression, reporting marginal effects Number of obs = 7 LR chi2(6) = 215. Prob > chi2 = 0.00										753 .77 000				
Log likelihood = -406.98832								1	seud	0 R2		=	0.20)95
inlf	d	lF/dx	Std.	Err.		z	P> z	x-1	oar	[95% 	c.	I.]
nwifeinc	004	4306	.001	8532	-2.	39	0.017	20.1	L29	00	8063		0007	798
ed	.047	5146	.009	6489	4.	92	0.000	12.28	369	.02	8603	•	0664	£26
exp	.045	8038	.007	2682	6.	32	0.000	170.63	808	.03	1147	•	0600)49
expsq	000	00002	.000	2341 0042	-2.	94 72	0.003	1/8.0	139	00	LL4/		014	129 701
dkidslt6*	388	8635	.003	4916	-0. -7.	73 04	0.000	42.5. .1952	219	48	5215	 	2925	512
obs. P	.568	3931	(at v											
(*) dF/dx	is for	discr	ete ch	ange of	E dum	 my v	variable	from () to	 1				

z and P > |z| correspond to the test of the underlying coefficient being 0

Maximized Log-Likelihood Value

The **maximized log-likelihood value** for Model 2, denoted in *Stata* as **Log likelihood**, is the maximized value of the objective function or sample log-likelihood function corresponding to ML estimates of the probit coefficient vector $\beta = (\beta_0 \quad \beta_1 \quad \beta_2 \quad \beta_3 \quad \beta_4 \quad \beta_5 \quad \delta_0)^T$:

$$\ln \hat{L}_{1} = \sum_{i=1}^{N} Y_{i} \ln \Phi \left(x_{i}^{T} \hat{\beta} \right) + \sum_{i=1}^{N} (1 - Y_{i}) \ln \left[1 - \Phi \left(x_{i}^{T} \hat{\beta} \right) \right]$$

$$= \frac{\sum_{i=1}^{N} Y_{i} \ln \Phi \left(\hat{\beta}_{0} + \hat{\beta}_{1} n wifeinc_{i} + \hat{\beta}_{2} ed_{i} + \hat{\beta}_{3} exp_{i} + \hat{\beta}_{4} exp_{i}^{2} + \hat{\beta}_{5} age_{i} + \hat{\delta}_{0} dkidslt6_{i} \right)$$

$$+ \sum_{i=1}^{N} (1 - Y_{i}) \ln \left[1 - \Phi \left(\hat{\beta}_{0} + \hat{\beta}_{1} n wifeinc_{i} + \hat{\beta}_{2} ed_{i} + \hat{\beta}_{3} exp_{i} + \hat{\beta}_{4} exp_{i}^{2} + \hat{\beta}_{5} age_{i} + \hat{\delta}_{0} dkidslt6_{i} \right) \right]$$

where $\hat{\beta}_{ML} = (\hat{\beta}_0 \quad \hat{\beta}_1 \quad \hat{\beta}_2 \quad \hat{\beta}_3 \quad \hat{\beta}_4 \quad \hat{\beta}_5 \quad \hat{\delta}_0)^T$ is the vector of ML probit coefficient estimates. $\ln \hat{L}_1$ is simply the maximized value of the objective function, the sample log-likelihood function for Model 2.

$Pseudo-R^2$

The **pseudo-\mathbb{R}^2 value** for Model 2, denoted in *Stata* as **Pseudo R2**, is given by the expression:

pseudo-
$$\mathbf{R}^2 = 1 - \frac{\ln \hat{L}_1}{\ln \hat{L}_0}$$

where $\ln \hat{L}_0 = \sum_{i=1}^{N} Y_i \ln \Phi(\tilde{\beta}_0) + \sum_{i=1}^{N} (1 - Y_i) \ln [1 - \Phi(\tilde{\beta}_0)]$ is the maximized log-likelihood value for the *restricted* model implied by the null hypothesis that all the *slope* coefficients in Model 2 are jointly equal to *zero* – i.e., under the null hypothesis

H₀:
$$\beta_1 = 0$$
 and $\beta_2 = 0$ and $\beta_3 = 0$ and $\beta_4 = 0$ and $\beta_5 = 0$ and $\delta_0 = 0$
or

$$\beta_i = 0$$
 for all $j = 1, ..., 5$ and $\delta_0 = 0$

The *probit index function*, or regression function, for **Model 2** is:

$$\mathbf{x}_{i}^{\mathrm{T}}\boldsymbol{\beta} = \boldsymbol{\beta}_{0} + \boldsymbol{\beta}_{1} \mathbf{n} \mathbf{w} \mathbf{i} \mathbf{f} \mathbf{e} \mathbf{i} \mathbf{c}_{i} + \boldsymbol{\beta}_{2} \mathbf{e} \mathbf{d}_{i} + \boldsymbol{\beta}_{3} \mathbf{e} \mathbf{x} \mathbf{p}_{i} + \boldsymbol{\beta}_{4} \mathbf{e} \mathbf{x} \mathbf{p}_{i}^{2} + \boldsymbol{\beta}_{5} \mathbf{a} \mathbf{g} \mathbf{e}_{i} + \boldsymbol{\delta}_{0} \mathbf{d} \mathbf{k} \mathbf{i} \mathbf{d} \mathbf{s} \mathbf{l} \mathbf{f}_{i}$$

LR Chi-square Statistic

The LR chi-square statistic for Model 2, denoted in *Stata* as LR chi2(6), is the likelihood ratio (LR) test statistic for testing the *joint* significance of the *slope* coefficients. That is, it tests the null hypothesis H_0

H₀:
$$\beta_1 = 0$$
 and $\beta_2 = 0$ and $\beta_3 = 0$ and $\beta_4 = 0$ and $\beta_5 = 0$ and $\delta_0 = 0$ or $\beta_j = 0$ for all $j = 1, ..., 5$ and $\delta_0 = 0$

against the alternative hypothesis

$$\begin{split} H_1: \ \beta_1 \neq 0 \ \textit{and/or} \ \beta_2 \neq 0 \ \textit{and/or} \ \beta_3 \neq 0 \ \textit{and/or} \ \beta_4 \neq 0 \ \textit{and/or} \ \beta_5 \neq 0 \ \textit{and/or} \ \delta_0 \neq 0 \\ or \\ \beta_j \neq 0 \ \text{ for } j = 1, \ \dots, \ 5 \ \textit{and/or} \ \delta_0 = 0 \end{split}$$

The *restricted probit index function*, or regression function, for **Model 2** under the null hypothesis H₀ is:

$$\mathbf{x}_{i}^{T}\boldsymbol{\beta} = \boldsymbol{\beta}_{0}$$

The *unrestricted probit index function*, or regression function, for Model 2 under the alternative hypothesis H₁ is:

$$x_i^{T}\beta = \beta_0 + \beta_1 nwifeinc_i + \beta_2 ed_i + \beta_3 exp_i + \beta_4 exp_i^2 + \beta_5 age_i + \delta_0 dkidslt6_i$$

ECON 452*: Overview of Stata13 Tutorials 8 and 9_slides.doc

The **LR test statistic** is equal to *twice* the difference between

$$ln\,\hat{L}_{1} = \sum_{i=1}^{N} Y_{i}\,ln\,\Phi\left(x_{i}^{^{\mathrm{T}}}\hat{\beta}_{^{\mathrm{ML}}}\right) + \sum_{i=1}^{N} (1-Y_{i})\,ln\left[1-\Phi\left(x_{i}^{^{\mathrm{T}}}\hat{\beta}_{^{\mathrm{ML}}}\right)\right]$$

= the maximized log-likelihood value for the *unrestricted* model corresponding to H_1 and

$$ln \, \hat{L}_{_0} = \sum_{_{i=1}}^{^{N}} Y_{_i} ln \, \Phi \left(x_{_i}^{^{\mathrm{T}}} \widetilde{\beta}_{_{ML}} \right) \\ + \sum_{_{i=1}}^{^{N}} (1 - Y_{_i}) ln \left[1 - \Phi \left(x_{_i}^{^{\mathrm{T}}} \widetilde{\beta}_{_{ML}} \right) \right] \\ = \sum_{_{i=1}}^{^{N}} Y_{_i} ln \, \Phi \left(\widetilde{\beta}_{_0} \right) \\ + \sum_{_{i=1}}^{^{N}} (1 - Y_{_i}) ln \left[1 - \Phi \left(\widetilde{\beta}_{_0} \right) \right] \\ = \sum_{_{i=1}}^{^{N}} Y_{_i} ln \, \Phi \left(\widetilde{\beta}_{_0} \right) \\ + \sum_{_{i=1}}^{^{N}} (1 - Y_{_i}) ln \left[1 - \Phi \left(\widetilde{\beta}_{_0} \right) \right] \\ = \sum_{_{i=1}}^{^{N}} Y_{_i} ln \, \Phi \left(\widetilde{\beta}_{_0} \right) \\ + \sum_{_{i=1}}^{^{N}} (1 - Y_{_i}) ln \left[1 - \Phi \left(\widetilde{\beta}_{_0} \right) \right] \\ = \sum_{_{i=1}}^{^{N}} Y_{_i} ln \, \Phi \left(\widetilde{\beta}_{_0} \right) \\ + \sum_{_{i=1}}^{^{N}} (1 - Y_{_i}) ln \left[1 - \Phi \left(\widetilde{\beta}_{_0} \right) \right] \\ = \sum_{_{i=1}}^{^{N}} Y_{_i} ln \, \Phi \left(\widetilde{\beta}_{_0} \right) \\ + \sum_{_{i=1}}^{^{N}} (1 - Y_{_i}) ln \left[1 - \Phi \left(\widetilde{\beta}_{_0} \right) \right] \\ = \sum_{_{i=1}}^{^{N}} Y_{_i} ln \, \Phi \left(\widetilde{\beta}_{_0} \right) \\ + \sum_{_{i=1}}^{^{N}} (1 - Y_{_i}) ln \left[1 - \Phi \left(\widetilde{\beta}_{_0} \right) \right] \\ = \sum_{_{i=1}}^{^{N}} Y_{_i} ln \, \Phi \left(\widetilde{\beta}_{_0} \right) \\ + \sum_{_{i=1}}^{^{N}} (1 - Y_{_i}) ln \left[1 - \Phi \left(\widetilde{\beta}_{_0} \right) \right] \\ = \sum_{_{i=1}}^{^{N}} (1 - Y_{_i}) ln \left[1 - \Phi \left(\widetilde{\beta}_{_0} \right) \right]$$

= the maximized log-likelihood value for the *restricted* model corresponding to H_0 .

That is, the LR test statistic for a joint test of all slope coefficients in Model 2 is:

 $LR = 2 \left(\ln \hat{L}_1 - \ln \hat{L}_0 \right).$

The *null distribution of LR* under the null hypothesis H₀ is chi-square with q degrees of freedom, i.e., $\chi^2(q) = \chi^2(6)$, since the number of restrictions q = 6 for Model 2.

LR ~
$$\chi^2(q) = \chi^2(6)$$
 under H₀ for Model 2

z statistics

The **z-statistic** for each probit coefficient estimate is just a **t-statistic** for a **two-tail test** of the null hypothesis that the probit coefficient equals zero; i.e., a t-statistic for testing the null hypothesis

H₀: $\beta_j = 0$

against the two-sided alternative hypothesis

 $H_1: \beta_j \neq 0$

The z-statistic for H_0 versus H_1 is thus:

$$z(\hat{\beta}_j) = \frac{\hat{\beta}_j}{\hat{se}(\hat{\beta}_j)} \sim N(0,1) \text{ under } H_0: \beta_j = 0$$

Note: As $N \to \infty$, $t(N - K) \to N(0,1)$; this means that the standard normal distribution is the limiting, or asymptotic, distribution of the t-distribution.

The two-tail p-value for $z(\hat{\beta}_i)$ is labeled $\mathbf{P} > |\mathbf{z}|$ in the output for the *Stata* probit and dprobit commands.